2023-24 Academic Catalog

Department of Geosciences

Department Head: Dr. John Rodgers
Office: 108 Hilbun
Academic Coordinator: Tina Davis (Starkville campus) and Yasma Jacobs (Distance Learning)

B.S. and M.S. degrees in Geoscience  and a PhD in Earth and Atmospheric Sciences are offered with emphasis in sub-disciplines described below. Minors are offered at both B.S. and M.S. levels in Geoscience.

The Department of Geosciences strives for an integrated, interdisciplinary study of the whole Earth from the bachelor's through the Ph.D. levels. Course offerings are grouped into six areas of emphasis:

  1. Professional Geology - physical, biological, and chemical aspects of the Earth;
  2. Geography - distribution of physical features and human interaction with the Earth;
  3. Environmental Geoscience - conservation and management of Earth resources and remediation of natural and human hazards;
  4. Broadcast Meteorology/Climatology - radio/television weathercasting;
  5. Professional Meteorology/Climatology - atmospheric processes and climatic variability; and
  6. Geographic Information Systems - spatial analysis and topological relationships of geographic data.
     

Within the six areas of emphasis outlined above, a student may further focus interests in a variety of areas including: water resources, hydrogeology and environmental clean-up and monitoring, petroleum exploration and services, construction and urbanization involving geological applications, geophysics and geochemistry, sedimentary geology and paleontology, Quaternary geology and karst processes, Geographic Information Systems, human or physical geography, or analysis and prediction of weather and climate. A minimum of 40 credit hours in geoscience courses is required for the geoscience degree. A grade of C or higher is required on all departmental courses to satisfy graduation requirements. Students in the professional geology concentration are required to take the Association of State Board of Geologists Fundamentals of Geology (ASBOG-FG) exam.

A minor in geoscience consists of a minimum of 14 credit hours in courses numbered 2000 and above, in addition to the first year courses. The following are examples of variations within a geoscience minor. A minor with a Geology emphasis should include physical (GG 1113/GG 1111) and historical geology (GG 1123/GG 1121) plus 14 hours 2000 and above for a total of 22 hours; for an Environmental Geoscience emphasis, physical and historical geology with laboratory plus introduction to environmental geology (GG 3133) and other course work 2000 and above for a total of 22 hours; for emphasis in Geography, cultural geography (GR 2013), world geography (GR 1123) and other course work 2000 and above; and Broadcast Meteorology/climatology, physical geography (GR 1113/GR 1111) and either introduction to environmental geology (GG 3133) or conservation of natural resources (GR 3113) and other course work 2000 and above for a total of 21 hours. Minors in Geoscience are also available at the M.S. level.

Three educational enhancement awards and eight scholarships are available to students majoring in Geoscience, namely the F.F. Mellen, Forrest W. Pace, and Summer Geology Educational Enhancement awards, and the George W. Bishop, the Paul H. Dunn Memorial, the Ronald Greeley Memorial, the Gordon W. Gulmon, the Sistrunk Endowed, the Mark Worthey Endowed, the Alex Herbst Memorial, and the Dr. Charles Wax Endowed Scholarship. The three Educational Enhancement Awards provide financial assistance to those enrolled in field geology camp during the summer. The eight scholarships are awarded to students for academic excellence. All are restricted to students at junior or senior rank, with the exception of the Sistrunk Endowed, the Worthey Endowed, and the Greeley Memorial Scholarships. The Dr. Charles Wax Endowed Scholarship is only for graduate students.

The Department of Geosciences encourages involvement in Sigma Gamma Epsilon, a nationally recognized honorary Earth Science society and Gamma Theta Upsilon, international honor society in geography. Requirements for acceptance in Sigma Gamma Upsilon include a grade-point average of at least 3.00 in 12 or more hours of geoscience and a cumulative average of 2.67. Requirements for Gamma Theta Upsilon are a grade-point average of at least 3.3 overall as well as in at least 9 hours of "GR" courses.

The Department of Geosciences participates with the National Weather Association (NWA) and the American Meteorological Society (AMS) in training individuals for the respective “Weathercaster Seals of Approval”. The Office of the State Climatologist and the MSU Climatology Laboratory are housed in the Department and are strongly involved in programs for all students with interests in professional and broadcast meteorology and climatology.

Distance Learning Programs

The Department of Geosciences offers four distance learning programs listed below that can lead to a degree in Geosciences. Each program utilizes recorded lectures and the Internet for course instruction.

Broadcast and Operational Meteorology Program. A three-year, 17 course, 53 credit hour program of study that can lead to a B.S. degree in Geosciences. Primarily for individuals in television weather.

Applied Meteorology Program. A two-year, 12 course 36 credit hour program of study that leads to a M.S. degree in Geosciences. Primarily for individuals with meteorological, environmental, or hazards-related careers.

Environmental Geoscience Program. A 30-credit hour, non-thesis program that leads to a M.S. degree in Geosciences. It is designed for students interested in graduate study of a broad cross-section of the geosciences and is offered both on-campus and through distance education.

Geosciences Major

General Education and College Requirements

English Composition
EN 1103English Composition I3
or EN 1104 Expanded English Composition I
EN 1113English Composition II3
or EN 1173 Accelerated Composition II
Foreign Language
Foreign Language I3
Foreign Language II3
Humanities
Literature - A&S core3
History - A&S core3
Mathematics
Specified in each concentration area
Fine Arts
A&S core3
(CO 1503 is required for Broadcast Meteorology concentration)
Natural Sciences
Specified in each concentration area
Social Sciences
GR 1123Introduction to World Geography3
A&S Core 13
(CO 1403 is required for Broadcast Meteorology concentration)
Major Core
Introductory Course with lab
GG 1113
GG 1111
Survey of Earth Sciences I
and Earth Sciences I Laboratory
4
or GR 1113
GR 1111
Physical Geography
and Physical Geography Laboratory
Oral Communication
CO 1003Fundamentals of Public Speaking3
or CO 1013 Introduction to Communication

Choose one of the following concentrations:

Professional Geology Concentration (GEOL)

The Professional Geology concentration is designed to prepare students for entry-level employment in the environmental consulting industry; state and federal government agencies; as well as energy and extraction industries, such as oil, gas, and coal. The Professional Geology degree also prepares students for application to a graduate program.

Mathematics
MA 1713Calculus I3
MA 1723Calculus II3
Natural Sciences
CH 1213Chemistry I3
CH 1211Investigations in Chemistry I1
CH 1223Chemistry II3
CH 1221Investigations in Chemistry II1
PH 1113General Physics I3
PH 1123General Physics II3
PH 1133General Physics III3
or GG 4233 Applied Geophysics
or GG 4633 Introduction to Geochemistry
Concentration Requirements
GG 1121Earth Sciences II Laboratory1
GG 1123Survey of Earth Sciences II3
GG 3133Introduction to Environmental Geology3
GG 3613Water Resources 13
GG 4114Mineralogy4
GG 4124Petrology4
GG 4201Practicum on Paleontology1
GG 4304Principles of Sedimentary Deposits I4
GG 4333Geowriting 23
GG 4414Structural Geology4
GG 4443Principles of Sedimentary Deposits II3
GG 4503Geomorphology3
GR 4303Principles of GIS3
GR 4633Statistical Climatology3
or ST 2113 Introduction to Statistics
or ST 3123 Introduction to Statistical Inference
GG 4446Summer Geology Field Camp 36
Choose one of the following:3
GG 4113Micropaleontology3
Principles of Paleoecology
Principles of Paleobiology
Choose one of the following:6
Planetary Geology
Introduction to Oceanography
Coastal Environments
Weather and Climate
Choose three additional courses from the following lists:9
Environmental Professional Emphasis
Engineering Geology
Physical Hydrogeology
Introduction to Geochemistry
Petroleum Professional Emphasis
Earth and Atmospheric Energy Resources
Applied Geophysics
Subsurface Methods
Geospatial Professional Emphasis
Advanced GIS
Remote Sensing of the Physical Environment
Advanced Remote Sensing in Geosciences
Geographic Information Systems Programming
Total Hours120

Environmental Geoscience Concentration (ENGS)

The Environmental Geoscience concentration is designed to be a flexible degree that provides a broad cross-section of the geosciences with emphasis on environmental stewardship. The degree can be molded with the assistance of an academic adviser to suit individual goals of students that do not readily align with other geosciences curricula. The degree prepares students to work as a geoscientist or prepares students for graduate school in the geosciences or other related fields. 

Mathematics
MA 1323Trigonometry3
Natural Sciences
A&S core science with lab6-8
A&S core science - lab not required3
Concentration Requirements
GG 3133Introduction to Environmental Geology3
or GR 3113 Conservation of Natural Resources
GG 3603Introduction to Oceanography3
GG 3613Water Resources3
GG 4333Geowriting 23
GR 1133Weather and Climate3
GR 1131Weather and Climate Laboratory1
GR 4303Principles of GIS3
ST 2113Introduction to Statistics3
GG/GR 4000+ Electives18
Choose one of the following:3
Planetary Geology
Introduction to Environmental Geology (if not taken as a concentration course)
Conservation of Natural Resources
Coastal Environments
Community Engagement in Environmental Geosciences
Maps and Remote Sensing
Conservation of Natural Resources
GR 4113
Natural Hazards and Processes
General Electives - consult advisor33-35
Total Hours124

Geography Concentration (GPHY)

This program prepares students to work in a variety of fields across the social and natural sciences. A geography degree can provide the multidisciplinary foundation necessary for careers in government, environmental management, education, planning, and development. People with geography degrees have found employment with: the US Census Bureau, National Parks Service, the National Forest Service, and other federal government agencies, non-profit organizations focusing on community and international development, the environmental assessment industry, the GIS/geospatial industry, environmental and historical interpretation, and urban and regional planning. Our students also receive a strong foundation for further graduate studies in geography and related disciplines. 

Mathematics
MA 1323Trigonometry3
Natural Sciences
A&S core science with lab6-8
A&S core science - no lab required3
Concentration Requirements
GG 4333Geowriting 23
GR 1133Weather and Climate3
GR 1131Weather and Climate Laboratory1
GR 2013Human Geography3
GR 2313Maps and Remote Sensing3
GR 4203Geography of North America3
GR 4303Principles of GIS3
ST 2113Introduction to Statistics3
GG/GR 4000+ Electives15
Choose four of the following:12
Introduction to Environmental Geology
Introduction to Oceanography
Water Resources
Coastal Environments
Conservation of Natural Resources
GR 4113
Natural Hazards and Processes
Choose four of the following:12
Urban Geography
Geography of Latin America
Geography of Europe
Geography of Asia
Geography of Russia and the Former Soviet Republics
Geography of Africa
Geography of the South
Geography of Islamic World
General Electives - consult advisor15-17
Total Hours124

Broadcast Meteorology Concentration (BMP)

This program focuses on preparing students for a career in radio/television weathercasting. The coursework does not meet the requirements for the American Meteorological Society's Certified Broadcast Meteorological Seal of Approval because it lacks some of the math and physics requirements. Individuals can, however, be qualified to earn the National Weather Association Seal of Approval after working in the industry for three years. 

Mathematics
MA 1713Calculus I3
MA 1723Calculus II3
Natural Sciences
CH 1043Survey of Chemistry I3
PH 1113General Physics I (w/ lab)3
PH 1123General Physics II (w/ lab)3
Concentration Requirements
GR 1133Weather and Climate3
GR 1131Weather and Climate Laboratory1
GR 3011Weather Analysis1
GR 4423Weather Forecasting I3
GR 4433Weather Forecasting II3
GR 4623Physical Meteorology3
GR 4633Statistical Climatology3
or ST 3123 Introduction to Statistical Inference
GR 4643Physical Meteorology and Climatology I3
GR 4693Physical Meteorology and Climatology II3
GR 4733Synoptic Meteorology3
GR 4783Satellite Meteorology3
or GR 4883 Radar Meteorology
GR 4823Dynamic Meteorology I3
GR 4963Mesoscale Meteorology3
GR 4502Practicum in Broadcast Meteorology I2
GR 4512Practicum in Broadcast Meteorology II2
GR 4522Practicum in Broadcast Meteorology III2
GR 4532Practicum in Broadcast Meteorology IV2
CO 2333Television Production3
CO 2413Introduction to News Writing and Reporting3
CO 3313News Writing for the Electronic Media 23
CO 3333Advanced Television Production3
Choose three of the following:9
Introduction to Oceanography
Water Resources
Coastal Environments
Conservation of Natural Resources
GR 4203Geography of North America3
Principles of GIS
Computer Methods in Meteorology
Aviation Meteorology
Applied Climatology
Satellite Meteorology ((if not taken as a concentration course))
Radar Meteorology
Natural Hazards and Processes
Dynamic Meteorology II
GR 4943Tropical Meteorology3
General Electives - consult advisor11
Total Hours124

Professional Meteorology Concentration (PMET)

This program focuses on the study of atmospheric processes and climatic variability. Upon completion of the program (operational emphasis), students will have met the coursework requirements for the National Weather Service, the private meteorology sector, or continue their education in graduate school. Students choosing the program with the broadcast emphasis can also work for the National Weather Service and also earn the American Meteorological Society's Certified Broadcast Meteorologist Seal of Approval.

Mathematics
MA 1713Calculus I3
MA 1723Calculus II3
MA 2733Calculus III3
MA 2743Calculus IV3
MA 3253Differential Equations I3
Natural Sciences
CH 1213Chemistry I3
CH 1211Investigations in Chemistry I1
PH 2213Physics I3
PH 2223Physics II3
Concentration Requirements
GG 4333Geowriting 2, 43
or CO 3313 News Writing for the Electronic Media
GR 1133Weather and Climate3
GR 1131Weather and Climate Laboratory1
GR 3011Weather Analysis1
GR 4423Weather Forecasting I3
GR 4433Weather Forecasting II3
GR 4633Statistical Climatology3
or ST 3123 Introduction to Statistical Inference
GR 4643Physical Meteorology and Climatology I3
GR 4693Physical Meteorology and Climatology II3
GR 4733Synoptic Meteorology3
GR 4783Satellite Meteorology3
or GR 4883 Radar Meteorology
GR 4823Dynamic Meteorology I3
GR 4933Dynamic Meteorology II3
GR 4963Mesoscale Meteorology3
Choose three of the following:9
Introduction to Oceanography
Water Resources
Geographic Information Systems Programming 2
Coastal Environments
Conservation of Natural Resources
Geography of North America
Principles of GIS
Computer Methods in Meteorology
Aviation Meteorology
Applied Climatology
Natural Hazards and Processes
Satellite Meteorology (if not taken as a concentration course)
Radar Meteorology
Tropical Meteorology
Specified Electives - consult advisor18
Total Hours124

Geographic Information Systems (GIS) Concentration

This program provides a fundamental background in the geospatial sciences, including geographic information systems, remote sensing, spatial analysis, database management, geospatial modeling, and spatial programming. The geospatial sciences are applicable to many different fields and will prepare students for careers in: government agencies, urban and regional planning, environmental management, intelligence, natural areas management, local government, transportation planning and many others. This program also prepares students for further graduate studies in geospatial disciplines. 

Mathematics
MA 1323Trigonometry3
Natural Sciences
A&S core science with lab6-8
A&S core science - no lab required3
Concentration Requirements56
GR 1133Weather and Climate3
GR 1131Weather and Climate Laboratory1
GR 2313Maps and Remote Sensing3
GR 3303Survey of Geospatial Technologies3
GR 3113Conservation of Natural Resources3
GR 4303Principles of GIS3
GR 4313Advanced GIS3
GR 4323Cartographic Sciences3
GR 4333Remote Sensing of the Physical Environment3
GR 4343Advanced Remote Sensing in Geosciences3
GR 4353Geodatabase Design3
GR 4363Geographic Information Systems Programming3
GR 4373
GR 4411Remote Sensing Seminar1
GG 4333Geowriting 23
CSE 1284Introduction to Computer Programming4
ST 3123Introduction to Statistical Inference3
or GR 4633 Statistical Climatology
Choose two of the following:6
Introduction to Environmental Geology
Introduction to Oceanography
Water Resources 1
Coastal Environments
Natural Hazards and Processes
GG/GR 4000+ Electives12
General Electives - consult advisor10-12
Total Hours124

Broadcast & Operational Meteorology Concentration (Distance Learning only) 

Mathematics
A&S core3
Natural Sciences
A&S core science with lab6-8
A&S core science - no lab required3
Concentration Requirements
GR 1133Weather and Climate3
GR 1131Weather and Climate Laboratory1
GR 4443Weather Prediction I3
GR 4453Weather Prediction II3
GR 4473Numerical Weather Prediction3
GR 4613Applied Climatology3
GR 4623Physical Meteorology3
GR 4633Statistical Climatology3
GR 4643Physical Meteorology and Climatology I3
GR 4713Synoptic Meteorology I3
or GR 4733 Synoptic Meteorology
GR 4753Satellite and Radar Meteorology3
GR 4813Natural Hazards and Processes3
GR 4913Thermodynamic Meteorology3
or GR 4823 Dynamic Meteorology I
GR 4923Severe Weather3
or GR 4963 Mesoscale Meteorology
GG 3603Introduction to Oceanography3
GG 3613Water Resources3
GG 4333Geowriting 23
or CO 3313 News Writing for the Electronic Media
General Electives - consult advisor27-29
Total Hours124

Note: Students must complete 31 upper division hours in A&S in residence at MSU. 

1

Social Science courses must cover two disciplines and come from A&S core.

2

Satisfies Jr/Sr Writing requirement

3

From an approved university. Consult advisor.

4

CO 3313 must be taken for the Broadcast Meteorology concentration.

Geography Courses

GR 1001 First Year Seminar: 1 hour.

One hour lecture. First-year seminars explore a diverse array of topices that provide students with an opportunity to learn about a specific discipline from skilled faculty members

GR 1111 Physical Geography Laboratory: 1 hour.

Two hours laboratory. Lab course for GR 1113 but may be scheduled without GR 1113. Laboratory exploring the study of the different components of the earth system and their interactions, as well as their locations on Earth

GR 1113 Physical Geography: 3 hours.

Three hours lecture. Systematic study of the elements of the environmental process that form and characterize the earth's natural landscapes. May be taken as a science elective

GR 1123 Introduction to World Geography: 3 hours.

Three hours lecture. A survey of the world's regions, with emphasis upon locational aspects, physical and cultural diversity, and environmental issues

GR 1131 Weather and Climate Laboratory: 1 hour.

Two hours laboratory. Laboratory for GR 1133 but may be scheduled without GR 1133. Includes the study of atmospheric composition and structure, atmospheric motion and forces, atmospheric moisture, organized weather systems, weather forecasting, and global climates

GR 1133 Weather and Climate: 3 hours.

Three hours lecture. Descriptive study of weather with the objective of gaining appreciation of the variety of atmospheric phenomena. Explanation of daily weather events, their causes and impacts

GR 1703 Introduction to Climate and Climate Change: 3 hours.

Three hours lecture. A survey of climate science with a focus on contemporary climate change, paleoclimate, climate impacts, and climate policies

GR 2013 Human Geography: 3 hours.

Three hours lecture. Introduction to human geographic study of social, cultural, political and economic systems. Emphasis on concepts of space, place, landscape and nature/society relations

GR 2313 Maps and Remote Sensing: 3 hours.

Two hours lecture. Two hours laboratory. Fundamental principles of cartography and remote sensing, including types and applications. Attention is given to interpretation of surface features, environmental problem solving, and environmental planning

GR 2990 Special Topics in Geography: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GR 3011 Weather Analysis: 1 hour.

(Prerequisite: GR 1604). Two hours laboratory. Introduction to advanced meteorological analysis concepts including upper air map analysis, sounding analysis, numerical weather prediction, and basic synoptic meteorology analysis concepts

GR 3113 Conservation of Natural Resources: 3 hours.

Three hours lecture. Consideration of the current problems associated with the conservation of soils, forests, waters, minerals, and wildlife in the United States and the world

GR 3303 Survey of Geospatial Technologies: 3 hours.

(Prerequisite: GR 2313). Three hours lecture. Geographic Information Systems, Remote Sensing and Global Positioning Systems applied to earth systems and science. Includes field excursions for hands on experience with current technologies

GR 4000 Directed Individual Study in Geography: 1-6 hours.

Hours and credits to be arranged

GR 4123 Urban Geography: 3 hours.

Three hours lecture. Historic trends in distribution and growth of urban settlements, urban location theory; economic bases, functions, and structure of cities and metropolitan areas; urban problems; planning

GR 4133 Political Ecology: Space, Nature, and Justice: 3 hours.

Three hours lecture. This course provides an introduction to political ecology, an interdisciplinary approach to understanding human-environmental relations and the unequal causes and consequences of environmental change. Themes include the uneven ecological dynamics of development, resource extraction, and conservation, and the geographical dimensions of environmental justice and sustainability

GR 4203 Geography of North America: 3 hours.

Three hours lecture. A regional survey of the United States and Canada with emphasis upon place names, physical landscapes, historical settlement patterns, cultural regions, and environmental issues

GR 4213 Geography of Latin America: 3 hours.

Three hours lecture. A regional survey of Latin America with emphasis upon place names, physical environments, cultural landscapes and their evolution, and environmental issues

GR 4223 Geography of Europe: 3 hours.

Three hours lecture. A regional survey of Europe with emphasis upon placements, physical environments, cultural landscapes, geopolitical evolution, and environment issues

GR 4233 Geography of Asia: 3 hours.

Three hours lecture. A regional survey of Asia with emphasis upon placenames, physical geography, cultural diversity and cultural landscapes, geopolitical conflicts, and environmental issues

GR 4243 Geography of Russia and the Former Soviet Republics: 3 hours.

Three hours lecture. A regional survey of the former Soviet Union republics with emphasis upon placenames, physical environments, ethnic diversity, geopolitical evolution, and environmental issues

GR 4253 Geography of Africa: 3 hours.

Three hours lecture. A regional survey of the African continent with emphasis upon placenames, physical geography, cultural diversity and cultural landscapes, geopolitical changes, and environmental issues

GR 4263 Geography of the South: 3 hours.

Three hours lecture. A regional survey of the South with emphasis upon physical and cultural landscapes, spatial processes, economic development, environmental issues, and racial justice

GR 4283 Geography of Islamic World: 3 hours.

A regional survey of Islamic countries of the world with emphasis upon physical landscapes, cultural landscapes and their evolution, geopolitical conflicts and environmental issues

GR 4293 Caribbean Geography: 3 hours.

Three hours lecture. A regional survey of the West Indies, including the Greater Antilles, Lesser Antilles, and the Bahamas with emphasis on the physical, historical, demographic, political, cultural, economic, and environmental geographies

GR 4303 Principles of GIS: 3 hours.

Two hours lecture and two hours laboratory. Spatial analysis and topological relationships of geographic data using Geographic Information Systems, with emphasis on GIS theory

GR 4313 Advanced GIS: 3 hours.

(Prerequisite:GR 4303/6303 or consent of instructor). Two hours lecture. Two hours laboratory. Vector-based file structure and GIS queries using spatial and geodatabases attributes. Descriptive and prescriptive modeling in the raster domain including regression and linear weighted modeling

GR 4323 Cartographic Sciences: 3 hours.

(Prerequisite: Junior or graduate standing or consent of instructor.) Two hours lecture. Two hours laboratory. Principles of cartographic theory and map design. Types of maps, map projections, proportional symbols, use of color, mapping and statistics, interactive maps, and map animation

GR 4333 Remote Sensing of the Physical Environment: 3 hours.

Two hours lecture. Two hours laboratory. Examines remote sensing methods applicable to large-area analyses of watershed-level drainage systems, urban landscape, landscape vegetation metrics, physical landscape structural components and atmospheric features

GR 4343 Advanced Remote Sensing in Geosciences: 3 hours.

(Prerequisite: Either GR 4333/6333, ECE 4423/6423, or FO 4452/6452). Two hours lecture. Two hours laboratory. Geospatial image analysis; Theoretical basis of radiative transfer in atmosphere and water column; Quantitative remote sensing techniques and geospatial product development

GR 4353 Geodatabase Design: 3 hours.

(Prerequisite: GR 4303/6303). Three hours lecture. Examination of Geodatabase structures. Integration of relational databases with Geographic Information Systems. Management of spatial data using geodatabases. Implementation of Geodatabase processes through spatial programming

GR 4363 Geographic Information Systems Programming: 3 hours.

(Prerequisite: Either GR 4303/6303 or consent of instructor). Two hours lecture. Two hours laboratory. Design and implementation of geoprocessing scripts. Incorporation of modeling languages within geographic information systems (GIS) analysis. Seamless integration of other software programs with GIS software

GR 4411 Remote Sensing Seminar: 1 hour.

(Prerequisite:Junior Standing). One hour lecture. Lectures by remote sensing experts from industry, academia, and governmental agencies on the next- generation systems, applications, and economic and societal impact of remote sensing. May be repeated for credit up to four credits. (Same as PSS 4411/6411, ECE 4411/6411, FO 4411/6411)

GR 4423 Weather Forecasting I: 3 hours.

(Prerequisites: GR 3011 and GR 4733/6733). Two hours lecture. Two hours laboratory. Introduction to the process of creating and disseminating weather forecasts. Use of current weather data in creating daily forecasts for the local area

GR 4433 Weather Forecasting II: 3 hours.

(Prerequisite: GR 4423/6423). Two hours lecture. Two hours laboratory. Continuation of Weather Forecasting I. Emphasis placed on disseminating both oral and written forecasts for the local area as well as forecasting unique regional weather

GR 4443 Weather Prediction I: 3 hours.

(Prerequisite: GR 4713). Three hours lecture. Weather analysis and forecasting. Emphasis on local, short-term forecasting techniques, including temperature forecasting, precipitation forecasting, and convective forecasting

GR 4453 Weather Prediction II: 3 hours.

(Prerequisite: GR 4443 or consent of instructor). Three hours video and online. Continuation of GR 4443. Case studies of weather forecasts. Emphasis on special weather events and places

GR 4473 Numerical Weather Prediction: 3 hours.

This course provides students with an overview of the theory, processes, developments and applications of existing numerical weather prediction platforms

GR 4502 Practicum in Broadcast Meteorology I: 2 hours.

(Prerequisite: GR 1603). One hour lecture. Two hours laboratory. Introduction to developing a weather story with emphasis on producing weather graphics for television, chroma key mechanics, and weathercast communication

GR 4512 Practicum in Broadcast Meteorology II: 2 hours.

(Prerequisite:GR 4502/6502). One hour lecture. Two hours laboratory. Continuation of Practicum in Broadcast Meteorology I with emphasis on weather graphics production, weathercast performance, image, and communication. Supported by lab practice

GR 4522 Practicum in Broadcast Meteorology III: 2 hours.

Prerequisite: GR 4512/6512. One hour lecture. Two hours laboratory. Emphasis on advanced weathercasting, including field reporting, severe weather, and building graphics. Students are assigned actual television weather shows, with performance emphasis in the lab

GR 4532 Practicum in Broadcast Meteorology IV: 2 hours.

(Prerequisite:GR 4522/6522).One hour lecture.Two hours laboratory. Emphasis on the weathercasting job market in television. Students create actual television weather shows, and focus on producing a resume tape during the semester

GR 4553 Computer Methods in Meteorology: 3 hours.

(Prerequisite: GR 1603). Two hours lecture, two hours lab. Overview of computational methods and techniques commonly used in operational meteorology, focusing on scientific visualization and analysis, and numerical weather prediction

GR 4563 Aviation Meteorology: 3 hours.

(Prerequisite: GR 1604). Three hours lecture. Overview of meteorological concepts important to the aviation community, including how relevant weather data are collected and disseminated and how atmospheric properties relate to the basic physics of flight and aircraft performance

GR 4603 Climatology: 3 hours.

(Prerequisite: GR 1114 or GR 1123). Three hours lecture. Study of the elements and controls of weather and climate, distribution and characteristics of climatic regions

GR 4613 Applied Climatology: 3 hours.

(Prerequisites: GR 1603) Two hours lecture. Two hours laboratory. Problem solving in today's world in topics such as bioclimatology, agricultural climatology and land use climatology

GR 4623 Physical Meteorology: 3 hours.

(Prerequisite:GR 1603). An investigation of cloud physics/precipitation processes and solar/terrestrial radiation, including atmospheric dynamics, atmospheric electricity, optics, and instrumentation

GR 4633 Statistical Climatology: 3 hours.

(Prerequisites: GR 1603 or GG 1113 and MA 1313 or MA 1713). Two hours lecture. Two hours laboratory. A survey of the types of statistical weather data available. Manipulation of the data on various temporal and spatial scales

GR 4640 Meteorological Internship: 1-6 hours.

Hours and credits to be arranged. Internship with television station, private company or government agency under supervision of instructor

GR 4643 Physical Meteorology and Climatology I: 3 hours.

(Prerequisite: GR 1604 and MA 1323). Three hours lecture. An investigation of the physical aspects of Earth’s climate, including interactions between the atmosphere, hydrosphere, and land surface, and how they are affected by climate variability and change

GR 4693 Physical Meteorology and Climatology II: 3 hours.

(Prerequisite: MA 1713 and GR 4643). Three hours lecture. An investigation into important physical meteorology concepts, including introductory atmospheric thermodynamics, the planetary boundary layer, and cloud and moisture physics with an emphasis on meteorological theory and applications

GR 4713 Synoptic Meteorology I: 3 hours.

(Prerequisites: GR 1603 or equivalent.) Two hours lecture. Two hours laboratory. Fundamental principles behind weather forecasting. Physical processes in the atmosphere, atmospheric circulation systems, air mass analysis, frontogenesis and frontolysis

GR 4733 Synoptic Meteorology: 3 hours.

(Prerequisite:GR 1603 and MA 1713) Three hour lecture. Principles and derivation of meteorological theory. Emphasis on energy exchanges, atmospheric moisture, physical processes of atmospheric motion, air masses and fronts, and cyclogenesis

GR 4753 Satellite and Radar Meteorology: 3 hours.

(Prerequisite: GR 1603.) Three hours lecture. Study of the history, the operations, and the applications of satellites and radar in weather analysis. Theory of meteorological measurements in determinations of atmospheric structure

GR 4783 Satellite Meteorology: 3 hours.

(Prerequisites: GR 4733, GR 4643). Two hours lecture, two hours laboratory. Overview of remote sensing methods and techniques commonly used in satellite meteorology, focusing on physical mechanisms, atmospheric image analysis, and real-time weather applications

GR 4813 Natural Hazards and Processes: 3 hours.

(Prerequisites: GR 1114). Three hours lecture. A survey of natural phenomena in geology, oceanography and astronomy as applied to meteorology. Detailed study of earthquakes, volcanoes, ocean movements, and solar activity

GR 4823 Dynamic Meteorology I: 3 hours.

(Prerequisite: GR 4733/6733 and MA 1723). Three hours lecture. In-depth examination of theoretical methods for determining atmospheric stability and the tools necessary to interrogate the vertical profile of the atmosphere

GR 4841 Observations of Severe Local Storms: 1 hour.

One hour field experience. Real-world practice in forecasting, nowcasting observation, and reporting of severe storms in U.S. Great Plains

GR 4842 Forecasting Severe Local Storms: 2 hours.

One hour lecture and two hours lab. This course provides a theoretical overview and practical application of the severe local storms forecasting process

GR 4843 Field Methods of Severe Local Storms: 3 hours.

Two hours lecture. One hour field experience. Application of the latest synoptic and mesoscale severe weather forecasting methods concluding with field operations in the U.S. Great Plains

GR 4863 Forensic Geoscience: 3 hours.

(Prerequisite: GG 1113, GR 1114 or GR 1604). Three hours lecture. Multidisciplinary study using all branches of geoscience in investigating criminal offenses, reconstructing accidents and as evidence in civil and criminal court cases

GR 4883 Radar Meteorology: 3 hours.

(Prerequisite: GR 4733.) Two hours lecture. Two hours lab. Study of the history, the operation, and the application of radar in weather analysis. Theory and application of radar measurements in the determination of meteorological threats

GR 4913 Thermodynamic Meteorology: 3 hours.

(Prerequisite: GR 4733/6733 or GR 4713/6713). Three hours lecture. Examination of the meteorological stability within the earth's atmosphere. Focus on analysis of the various stability indices related to predicting severe weather

GR 4923 Severe Weather: 3 hours.

(Prerequisites: GR 4913/6913). Three hours lecture. Descriptive study of severe and unusual weather across the earth. Explanation of variations in severe weather in both spatial and temporal scales

GR 4933 Dynamic Meteorology II: 3 hours.

Three hours lecture. (Prerequisite GR 4823/6823 and MA 2733) Quantitative analysis and consideration of atmospheric circulation including jet streams, mid-latitude cyclones, vorticity and atmospheric kinetics

GR 4943 Tropical Meteorology: 3 hours.

(Prerequisite: GR 4733). Three hours lecture. Topics include the dynamics and circulation of the tropical atmosphere, characteristics of tropical cyclones, and forecasting methodologies for tropical weather

GR 4963 Mesoscale Meteorology: 3 hours.

(Prerequisite: GR 4733 or GR 4713). Three hours lecture. Descriptive and physical understanding of Mesoscale processes and their relevance to the synoptic environment. A strong focus will be placed upon Severe Local Storms

GR 4990 Special Topics in Geography: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GR 6113 Meteorology I: Observations: 3 hours.

Three hours lecture(online) Principles of meteorology with emphasis on elements, controls, and forecasting of atmospheric phenomena. Concentration on daily weather observation and the movement of weather systems. Primarily for K-12 teachers

GR 6123 Urban Geography: 3 hours.

Three hours lecture. Historic trends in distribution and growth of urban settlements, urban location theory; economic bases, functions, and structure of cities and metropolitan areas; urban problems; planning

GR 6133 Political Ecology: Space, Nature, and Justice: 3 hours.

Three hours lecture. This course provides an introduction to political ecology, an interdisciplinary approach to understanding human-environmental relations and the unequal causes and consequences of environmental change. Themes include the uneven ecological dynamics of development, resource extraction, and conservation, and the geographical dimensions of environmental justice and sustainability

GR 6203 Geography of North America: 3 hours.

Three hours lecture. A regional survey of the United States and Canada with emphasis upon place names, physical landscapes, historical settlement patterns, cultural regions, and environmental issues

GR 6213 Geography of Latin America: 3 hours.

Three hours lecture. A regional survey of Latin America with emphasis upon place names, physical environments, cultural landscapes and their evolution, and environmental issues

GR 6223 Geography of Europe: 3 hours.

Three hours lecture. A regional survey of Europe with emphasis upon placements, physical environments, cultural landscapes, geopolitical evolution, and environment issues

GR 6233 Geography of Asia: 3 hours.

Three hours lecture. A regional survey of Asia with emphasis upon placenames, physical geography, cultural diversity and cultural landscapes, geopolitical conflicts, and environmental issues

GR 6243 Geography of Russia and the Former Soviet Republics: 3 hours.

Three hours lecture. A regional survey of the former Soviet Union republics with emphasis upon placenames, physical environments, ethnic diversity, geopolitical evolution, and environmental issues

GR 6253 Geography of Africa: 3 hours.

Three hours lecture. A regional survey of the African continent with emphasis upon placenames, physical geography, cultural diversity and cultural landscapes, geopolitical changes, and environmental issues

GR 6263 Geography of the South: 3 hours.

Three hours lecture. A regional survey of the South with emphasis upon physical and cultural landscapes, spatial processes, economic development, environmental issues, and racial justice

GR 6283 Geography of Islamic World: 3 hours.

A regional survey of Islamic countries of the world with emphasis upon physical landscapes, cultural landscapes and their evolution, geopolitical conflicts and environmental issues

GR 6293 Caribbean Geography: 3 hours.

Three hours lecture. A regional survey of the West Indies, including the Greater Antilles, Lesser Antilles, and the Bahamas with emphasis on the physical, historical, demographic, political, cultural, economic, and environmental geographies

GR 6303 Principles of GIS: 3 hours.

Two hours lecture and two hours laboratory. Spatial analysis and topological relationships of geographic data using Geographic Information Systems, with emphasis on GIS theory

GR 6313 Advanced GIS: 3 hours.

(Prerequisite:GR 4303/6303 or consent of instructor). Two hours lecture. Two hours laboratory. Vector-based file structure and GIS queries using spatial and geodatabases attributes. Descriptive and prescriptive modeling in the raster domain including regression and linear weighted modeling

GR 6323 Cartographic Sciences: 3 hours.

(Prerequisite: Junior or graduate standing or consent of instructor.) Two hours lecture. Two hours laboratory. Principles of cartographic theory and map design. Types of maps, map projections, proportional symbols, use of color, mapping and statistics, interactive maps, and map animation

GR 6333 Remote Sensing of the Physical Environment: 3 hours.

Two hours lecture. Two hours laboratory. Examines remote sensing methods applicable to large-area analyses of watershed-level drainage systems, urban landscape, landscape vegetation metrics, physical landscape structural components and atmospheric features

GR 6343 Advanced Remote Sensing in Geosciences: 3 hours.

(Prerequisite: Either GR 4333/6333, ECE 4423/6423, or FO 4452/6452). Two hours lecture. Two hours laboratory. Geospatial image analysis; Theoretical basis of radiative transfer in atmosphere and water column; Quantitative remote sensing techniques and geospatial product development

GR 6353 Geodatabase Design: 3 hours.

(Prerequisite: GR 4303/6303). Three hours lecture. Examination of Geodatabase structures. Integration of relational databases with Geographic Information Systems. Management of spatial data using geodatabases. Implementation of Geodatabase processes through spatial programming

GR 6363 Geographic Information Systems Programming: 3 hours.

(Prerequisite: Either GR 4303/6303 or consent of instructor). Two hours lecture. Two hours laboratory. Design and implementation of geoprocessing scripts. Incorporation of modeling languages within geographic information systems (GIS) analysis. Seamless integration of other software programs with GIS software

GR 6411 Remote Sensing Seminar: 1 hour.

(Prerequisite:Junior Standing). One hour lecture. Lectures by remote sensing experts from industry, academia, and governmental agencies on the next- generation systems, applications, and economic and societal impact of remote sensing. May be repeated for credit up to four credits. (Same as PSS 4411/6411, ECE 4411/6411, FO 4411/6411)

GR 6423 Weather Forecasting I: 3 hours.

(Prerequisites: GR 3011 and GR 4733/6733). Two hours lecture. Two hours laboratory. Introduction to the process of creating and disseminating weather forecasts. Use of current weather data in creating daily forecasts for the local area

GR 6433 Weather Forecasting II: 3 hours.

(Prerequisite: GR 4423/6423). Two hours lecture. Two hours laboratory. Continuation of Weather Forecasting I. Emphasis placed on disseminating both oral and written forecasts for the local area as well as forecasting unique regional weather

GR 6443 Weather Prediction I: 3 hours.

(Prerequisite: GR 4713). Three hours lecture. Weather analysis and forecasting. Emphasis on local, short-term forecasting techniques, including temperature forecasting, precipitation forecasting, and convective forecasting

GR 6473 Numerical Weather Prediction: 3 hours.

This course provides students with an overview of the theory, processes, developments and applications of existing numerical weather prediction platforms

GR 6502 Practicum in Broadcast Meteorology I: 2 hours.

(Prerequisite: GR 1603). One hour lecture. Two hours laboratory. Introduction to developing a weather story with emphasis on producing weather graphics for television, chroma key mechanics, and weathercast communication

GR 6512 Practicum in Broadcast Meteorology II: 2 hours.

(Prerequisite:GR 4502/6502). One hour lecture. Two hours laboratory. Continuation of Practicum in Broadcast Meteorology I with emphasis on weather graphics production, weathercast performance, image, and communication. Supported by lab practice

GR 6522 Practicum in Broadcast Meteorology III: 2 hours.

Prerequisite: GR 4512/6512. One hour lecture. Two hours laboratory. Emphasis on advanced weathercasting, including field reporting, severe weather, and building graphics. Students are assigned actual television weather shows, with performance emphasis in the lab

GR 6532 Practicum in Broadcast Meteorology IV: 2 hours.

(Prerequisite:GR 4522/6522).One hour lecture.Two hours laboratory. Emphasis on the weathercasting job market in television. Students create actual television weather shows, and focus on producing a resume tape during the semester

GR 6553 Computer Methods in Meteorology: 3 hours.

(Prerequisite: GR 1603). Two hours lecture, two hours lab. Overview of computational methods and techniques commonly used in operational meteorology, focusing on scientific visualization and analysis, and numerical weather prediction

GR 6563 Aviation Meteorology: 3 hours.

(Prerequisite: GR 1604). Three hours lecture. Overview of meteorological concepts important to the aviation community, including how relevant weather data are collected and disseminated and how atmospheric properties relate to the basic physics of flight and aircraft performance

GR 6603 Climatology: 3 hours.

(Prerequisite: GR 1114 or GR 1123). Three hours lecture. Study of the elements and controls of weather and climate, distribution and characteristics of climatic regions

GR 6613 Applied Climatology: 3 hours.

(Prerequisites: GR 1603) Two hours lecture. Two hours laboratory. Problem solving in today's world in topics such as bioclimatology, agricultural climatology and land use climatology

GR 6623 Physical Meteorology: 3 hours.

(Prerequisite:GR 1603). An investigation of cloud physics/precipitation processes and solar/terrestrial radiation, including atmospheric dynamics, atmospheric electricity, optics, and instrumentation

GR 6633 Statistical Climatology: 3 hours.

(Prerequisites: GR 1603 or GG 1113 and MA 1313 or MA 1713). Two hours lecture. Two hours laboratory. A survey of the types of statistical weather data available. Manipulation of the data on various temporal and spatial scales

GR 6640 Meteorological Internship: 1-6 hours.

Hours and credits to be arranged. Internship with television station, private company or government agency under supervision of instructor

GR 6643 Physical Meteorology and Climatology I: 3 hours.

(Prerequisite: GR 1604 and MA 1323). Three hours lecture. An investigation of the physical aspects of Earth’s climate, including interactions between the atmosphere, hydrosphere, and land surface, and how they are affected by climate variability and change

GR 6693 Physical Meteorology and Climatology II: 3 hours.

(Prerequisite: MA 1713 and GR 4643). Three hours lecture. An investigation into important physical meteorology concepts, including introductory atmospheric thermodynamics, the planetary boundary layer, and cloud and moisture physics with an emphasis on meteorological theory and applications

GR 6713 Synoptic Meteorology I: 3 hours.

(Prerequisites: GR 1603 or equivalent.) Two hours lecture. Two hours laboratory. Fundamental principles behind weather forecasting. Physical processes in the atmosphere, atmospheric circulation systems, air mass analysis, frontogenesis and frontolysis

GR 6733 Synoptic Meteorology: 3 hours.

(Prerequisite:GR 1603 and MA 1713) Three hour lecture. Principles and derivation of meteorological theory. Emphasis on energy exchanges, atmospheric moisture, physical processes of atmospheric motion, air masses and fronts, and cyclogenesis

GR 6753 Satellite and Radar Meteorology: 3 hours.

(Prerequisite: GR 1603.) Three hours lecture. Study of the history, the operations, and the applications of satellites and radar in weather analysis. Theory of meteorological measurements in determinations of atmospheric structure

GR 6783 Satellite Meteorology: 3 hours.

(Prerequisites: GR 4733, GR 4643). Two hours lecture, two hours laboratory. Overview of remote sensing methods and techniques commonly used in satellite meteorology, focusing on physical mechanisms, atmospheric image analysis, and real-time weather applications

GR 6813 Natural Hazards and Processes: 3 hours.

(Prerequisites: GR 1114). Three hours lecture. A survey of natural phenomena in geology, oceanography and astronomy as applied to meteorology. Detailed study of earthquakes, volcanoes, ocean movements, and solar activity

GR 6823 Dynamic Meteorology I: 3 hours.

(Prerequisite: GR 4733/6733 and MA 1723). Three hours lecture. In-depth examination of theoretical methods for determining atmospheric stability and the tools necessary to interrogate the vertical profile of the atmosphere

GR 6841 Observations of Severe Local Storms: 1 hour.

One hour field experience. Real-world practice in forecasting, nowcasting observation, and reporting of severe storms in U.S. Great Plains

GR 6842 Forecasting Severe Local Storms: 2 hours.

One hour lecture and two hours lab. This course provides a theoretical overview and practical application of the severe local storms forecasting process

GR 6843 Field Methods of Severe Local Storms: 3 hours.

Two hours lecture. One hour field experience. Application of the latest synoptic and mesoscale severe weather forecasting methods concluding with field operations in the U.S. Great Plains

GR 6863 Forensic Geoscience: 3 hours.

(Prerequisite: GG 1113, GR 1114 or GR 1604). Three hours lecture. Multidisciplinary study using all branches of geoscience in investigating criminal offenses, reconstructing accidents and as evidence in civil and criminal court cases

GR 6883 Radar Meteorology: 3 hours.

(Prerequisite: GR 4733.) Two hours lecture. Two hours lab. Study of the history, the operation, and the application of radar in weather analysis. Theory and application of radar measurements in the determination of meteorological threats

GR 6913 Thermodynamic Meteorology: 3 hours.

(Prerequisite: GR 4733/6733 or GR 4713/6713). Three hours lecture. Examination of the meteorological stability within the earth's atmosphere. Focus on analysis of the various stability indices related to predicting severe weather

GR 6923 Severe Weather: 3 hours.

(Prerequisites: GR 4913/6913). Three hours lecture. Descriptive study of severe and unusual weather across the earth. Explanation of variations in severe weather in both spatial and temporal scales

GR 6933 Dynamic Meteorology II: 3 hours.

Three hours lecture. (Prerequisite GR 4823/6823 and MA 2733) Quantitative analysis and consideration of atmospheric circulation including jet streams, mid-latitude cyclones, vorticity and atmospheric kinetics

GR 6943 Tropical Meteorology: 3 hours.

(Prerequisite: GR 4733). Three hours lecture. Topics include the dynamics and circulation of the tropical atmosphere, characteristics of tropical cyclones, and forecasting methodologies for tropical weather

GR 6963 Mesoscale Meteorology: 3 hours.

(Prerequisite: GR 4733 or GR 4713). Three hours lecture. Descriptive and physical understanding of Mesoscale processes and their relevance to the synoptic environment. A strong focus will be placed upon Severe Local Storms

GR 6990 Special Topics in Geography: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GR 7000 Directed Individual Study in Geography: 1-6 hours.

Hours and credits to be arranged

GR 8123 Meteorology II: Forecasting and Storms: 3 hours.

(Prerequisite: GR 6113). Three hours lecture, video and online. Continuation of Meteorology I. Emphasis on the forecasting of daily weather events and on severe weather. Primarily for K-12 science teachers

GR 8133 Foundations in Forecasting: 3 hours.

Three hours lecture (online). Emphasis on daily weather forecasting at the synoptic and meso scales and introduction and investigation of advanced methods

GR 8143 Advanced Forecasting Techniques: 3 hours.

(Prerequisite: Consent of instructor), Three hours lecture. Regional and mesoscale forecasting topics and techniques, including coastal meteorology,mountain meteorology, fire weather, aviation meteorology and winter weather

GR 8183 Culture, Place, and Space: 3 hours.

Three hours lecture. This course investigates the relationship between culture, space, and place, introducing key ways social scientists approach these concerns. A central focus is the relationship between modes of social difference—particularly race, gender, and class—and cultural meaning in spatial power relations. (Same as AN 8183)

GR 8191 Geoscience Review: 1 hour.

(Prerequisites: 30 hours of GR/GG graduate work). One hour seminar. Conduit for interactions with faculty members to assist students in preparing for comprehensive assessment in distance learning degree programs

GR 8303 Advanced Geodatabase Systems: 3 hours.

(Prerequisite: GR 4353/6353). Two hours lecture. Two hours laboratory. Examination of database structures utilized in geospatial information systems. Design and use of geospatial databases through spatial programming in development and implementation of spatial models

GR 8313 Advanced Human Geography: 3 hours.

Three hours seminar. Advanced study and discussion of human geographic theories, concepts and methods

GR 8333 Field Techniques in Remote Sensing: 3 hours.

(Prerequisite: Either GR 4333/6333, ECE 4423/6423 or FO 4452/6452). Two hours lecture and two hours laboratory. Field spectroscopy or proximal sensing; experimental design and data collection using in situ sensors; data analysis, model calibration, and validation for quantifying biophysical parameters

GR 8400 Field Methods in Geosciences: 1-3 hours.

Hours and credits to be arranged. May be taken twice. Provides field experience in the geosciences through planned and supervised outdoor projects and field trips

GR 8410 Field Methods Seminar: 3-4 hours.

(3-4 hours, credits to be arranged). (Prerequisite: Consent of instructor). May be repeated for credit two times. A seminar providing synthesis of multiple Geoscience subtopics held in rotating field experience locations

GR 8423 Virtual Field Methods Seminar: 3 hours.

Three hours seminar. Synthesis of geoscience sub-topics through collection and dissemination of local field data and through planned and supervised virtual field trip experiences

GR 8453 Quantitative Analysis in Climatology: 3 hours.

Three hours lecture. Implementation of quantitative methods in climatology, including modeling, resampling methods and spatial techniques, emphasizing climate analysis software packages and data formats

GR 8542 Geographic Literature: 2 hours.

(Prerequisite: Major or minor in geography). A reading course with emphasis on library research

GR 8553 Research Methods in Geoscience: 3 hours.

Three hours seminar and forum. Defining research problems, formulating hypotheses, collecting data, using analytical techniques, substantiating conclusions for geoscience topics; written and oral presentations of research projects required

GR 8563 GIS Research Applications: 3 hours.

(Prerequisite: GR 6333, GR 6313 or ST 8114). Two hours lecture. Two hours laboratory. This course examines the research cycle from proposal to peer-reviewed publication via case studies in GIS with applications for medical epidemiology, wildfire, and emergency management

GR 8573 Research in Applied Meteorology: 3 hours.

Seminar. Discussion and application of current research in applied meteorology. Individual or small group projects with research presentations

GR 8583 Environmental Geosciences Capstone Experience: 3 hours.

(Prerequisite: GR 8553). Three hours lecture. Application and synthesis of geosciences theory towards a directed research project. This course is the capstone experience for students in the MS in Environmental Geosciences Non-Thesis concentration. This course should be taken near the end of the program

GR 8613 Hydrometeorology: 3 hours.

Three hours lecture-video and online. Hydrometeorological principles with an emphasis on flood forecasting

GR 8633 Climate Change: 3 hours.

Three hours lecture. In-depth examination of changes in earth’s climate through time. Focus is placed on causes, measurement, implications and complexity of climate change

GR 8813 Advanced Hazards and Disasters: 3 hours.

Three hours lecture. Advanced study of the processes, distribution and impacts of hazards and disasters

GR 8833 Weather and Society: 3 hours.

Three hours lecture. Study of the role of weather in and on society through readings, discussion and research

GR 8843 Advanced Mesoscale Meteorology: 3 hours.

Three hours seminar. Readings, writings and discussion of topics related to the mesoscale atmospheric environment with a strong focus on severe local storms

GR 8913 Philosophy and Ethics in Geosciences: 3 hours.

Three hours seminar. Writing and discussion of topics related to the history and philosophy of science, professional and academic ethics, and epistemological issues related to the Geosciences

GR 8990 Special Topics in Geography: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GR 9000 Research in Geography: 1-13 hours.

Hours and credits to be arranged

Geology Courses

GG 1111 Earth Sciences I Laboratory: 1 hour.

Two hours laboratory. Laboratory for GG 1113, but may be scheduled without GG 1113. Includes study of earth materials, maps, and aerial photographs. Planned primarily as a science elective for the non-geology major

GG 1113 Survey of Earth Sciences I: 3 hours.

Three hours lecture. Study of the Earth in space, the materials of which the Earth is composed, and the processes affecting change on the Earth. Planned primarily as a science elective for the non-geology major

GG 1121 Earth Sciences II Laboratory: 1 hour.

Two hours laboratory. Laboratory for GG 1123, but may be scheduled without GG 1123. Includes the study of fossils, geologic maps, and geologic cross sections. Planned primarily as a science elective for the non-geology major

GG 1123 Survey of Earth Sciences II: 3 hours.

(Prerequisite: GG 1113). Three hours lecture. Origin and development of the Earth through geologic time. Planned primarily as a science elective for the non-geology major

GG 1133 Planetary Geology: 3 hours.

Three hours lecture. Process oriented examination of the planets and their satellites with emphasis on the "Earth-like" planets and moons

GG 2990 Special Topics in Geosciences: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GG 3133 Introduction to Environmental Geology: 3 hours.

(Prerequisite: GG 1113). Three hours lecture. Consideration of those aspects of earth science concerned with problems arising from intensive use of earth by modern society

GG 3603 Introduction to Oceanography: 3 hours.

Three hours lecture. A survey of the basic principles and applications of science to the study of the marine environment

GG 3613 Water Resources: 3 hours.

Three hours lecture. Introduction to the location, use, recovery and environmental problems of surface and subsurface waters

GG 4000 Directed Individual Study in Geosciences: 1-6 hours.

(Prerequisite: Junior standing). Hours and credits to be arranged

GG 4033 Resources and the Environment: 3 hours.

Three hours lecture. Formation and development of natural resources involving the basic evolution, planning, and design of a typical lignite coal mine, including environmental monitoring and reclamation

GG 4063 Earth and Atmospheric Energy Resources: 3 hours.

Three hours lecture. Formation, deposition, and extraction of fossil fuel resources, including coal, conventional, and unconventional hydrocarbons. Introduction to the geologic, geographic, and climatic aspects of Earth and atmospheric-sourced renewable resources

GG 4113 Micropaleontology: 3 hours.

(Prerequisite: GG 1123). Three hours lecture. A study of microscopic fossils. May be taken with GG 4201

GG 4114 Mineralogy: 4 hours.

(Prerequisites: GG 1113 and CH 1223). Three hours lecture. Three hours laboratory. The physical and chemical properties of minerals; crystallography, origin, distribution, association, uses, and identification of minerals

GG 4124 Petrology: 4 hours.

(Prerequisite: GG 4114). Three hours lecture and two hours laboratory. An investigation of important petrological concepts, including magmatic differentiation, classification of igneous and metamorphic rocks, and interpretation of thin sections of the rocks

GG 4133 Principles of Paleoecology: 3 hours.

(Prerequisite: GG 1123). Three hours lecture. A study of paleoecology with special emphasis on marine paleoecology. May be taken with GG 4201

GG 4153 Engineering Geology: 3 hours.

(Prerequisite: GG 1113). Two hours lecture. Two hours laboratory. Application of geologic principles to location and construction of engineering structures; engineering properties of geologic materials; engineering application of equipment used by geologists

GG 4201 Practicum on Paleontology: 1 hour.

(Prerequisites: GG 1123 and GG 1121). One hour lecture. Two hours laboratory. Laboratory for GG 4203 but may instead be taken with GG 4113 or GG 4133. A practicum in morphology of fossils, biostratigraphy, and paleoecology

GG 4203 Principles of Paleobiology: 3 hours.

(Prerequisites: GG 1123). Three hours lecture. Three hours laboratory. An introductory study of topics in paleobiology. May be taken with GG 4201

GG 4233 Applied Geophysics: 3 hours.

(Prerequisite: PH 1113 or PH 2213). Three hours lecture. A survey of the basic principles and applications of geophysics with major emphasis on petroleum exploration

GG 4304 Principles of Sedimentary Deposits I: 4 hours.

(Prerequisite: GG 1113). Three hours lecture. Three hours laboratory. Treatment of sediment and sedimentary rock. Emphasis on texture, fluid processes, deposition, structure, and diagenesis; stratigraphic analysis; and application to subsurface flow systems

GG 4323 Karst Processes and Landforms: 3 hours.

(Prerequisite: GG 1113). Three hours lecture. Processes of dissolution and the formation of Karst, pseudokarst features and landscapes. Major impact of diagenesis on rocks, landscape evolution and related subsurface hydrology

GG 4333 Geowriting: 3 hours.

Three hours lecture. Prepares students to present geosciences information through research papers and other forms of professional communication. Emphasizes writing for careers or advanced study in the geosciences

GG 4403 Gulf Coast Stratigraphy: 3 hours.

(Prerequisite: GG 4304). Three hours lecture or field trips. Systematic study of the stratigraphy of the Gulf Coast; actual field experience substituted for class work when conditions permit

GG 4414 Structural Geology: 4 hours.

(Prerequisites: GG 4114). Three hours lecture. Two hours laboratory. Application of the principles of mechanics to the forces deforming the rocks of the Earth's crust; emphasis on structures in sedimentary rocks

GG 4433 Subsurface Methods: 3 hours.

One hour lecture. Four hours laboratory. The study of subsurface geologic methods including contouring, sampling study, various types of logging, and the interpretation of subsurface data

GG 4443 Principles of Sedimentary Deposits II: 3 hours.

(Prerequisite: GG 4304). Three hours lecture. Application of principles from GG 4304. Introduces facies associations produced in depositional environments, systems, and systems tracts, tectonics and sedimentation, basin classification, and sequence analysis

GG 4446 Summer Geology Field Camp: 6 hours.

(Prerequisites: GG 4413, GG 4443, and GG 4124). Three hours lecture and three hours lab. Geologic maps, stratigraphic columns, structural cross-sections and reports will be prepared based on field data collected by the student

GG 4503 Geomorphology: 3 hours.

Three hours lecture. The origin and characteristics of land forms based on a consideration of geologic processes, stages of development, and geological structure

GG 4523 Coastal Environments: 3 hours.

Three hours lecture. An introduction to world coastal environments, with emphasis upon major shoreline-shaping processes, geographical variation in coastal landforms, human impacts, and environmental concerns

GG 4533 Geosciences Study Abroad: 3 hours.

Three hours study abroad. Identification of landforms and geomorphic processes and the field data collection techniques. Emphasis on human-environmental interactions

GG 4543 Community Engagement in Environmental Geosciences: 3 hours.

Three hours lecture. Research topics, field practices, and community engagement opportunities related to Environmental Geosciences. Activities include citizen science contributions and design; local field experiences to identify and evaluate various environmental concerns impacting communities; conduct community environmental sustainability evaluations; and develop environmental geosciences-focused community engagement events

GG 4613 Physical Hydrogeology: 3 hours.

Three hours lecture. Advanced study of the interrelationship of ground water and its geologic environment with emphasis on occurrence, distribution, and movement

GG 4623 Chemical Hydrogeology: 3 hours.

(Prerequisite: GG 4613). Three hours lecture. Advanced study of groundwater and its environment with emphasis on the chemical interaction of water with porous solids and the transport of chemical constituents

GG 4633 Introduction to Geochemistry: 3 hours.

(Prerequisite: CH 1223 and GG 1113). Three hours lecture. Survey of fundamental geochemical principles and methods. Learning in this course will be achieved by participation in analysis of published or unpublished datasets with further interpretation and application to the natural systems

GG 4643 Structural Geology for Industry Applications: 3 hours.

Two hours lecture, two hours lab. Investigation into geomechanical models of the subsurface as they pertain to the development and failure of geological structures, with emphasis on the effect of structures and stresses in industrial drilling

GG 4990 Special Topics in Geosciences: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GG 6033 Resources and the Environment: 3 hours.

Three hours lecture. Formation and development of natural resources involving the basic evolution, planning, and design of a typical lignite coal mine, including environmental monitoring and reclamation

GG 6063 Earth and Atmospheric Energy Resources: 3 hours.

Three hours lecture. Formation, deposition, and extraction of fossil fuel resources, including coal, conventional, and unconventional hydrocarbons. Introduction to the geologic, geographic, and climatic aspects of Earth and atmospheric-sourced renewable resources

GG 6103 Geology I: Processes and Products: 3 hours.

(Prerequisite: Consent of instructor). Three hours lecture (video and online). Principles of physical geology with emphasis on earth materials and processes, rock and mineral identification, and landscape development. Primarily for K-12 science teachers

GG 6113 Micropaleontology: 3 hours.

(Prerequisite: GG 1123). Three hours lecture. A study of microscopic fossils. May be taken with GG 4201

GG 6114 Mineralogy: 4 hours.

(Prerequisites: GG 1113 and CH 1223). Three hours lecture. Three hours laboratory. The physical and chemical properties of minerals; crystallography, origin, distribution, association, uses, and identification of minerals

GG 6124 Petrology: 4 hours.

(Prerequisite: GG 4114). Three hours lecture and two hours laboratory. An investigation of important petrological concepts, including magmatic differentiation, classification of igneous and metamorphic rocks, and interpretation of thin sections of the rocks

GG 6133 Principles of Paleocology: 3 hours.

(Prerequisite: GG 1123). Three hours lecture. A study of paleoecology with special emphasis on marine paleoecology. May be taken with GG 4201

GG 6153 Engineering Geology: 3 hours.

(Prerequisite: GG 1113). Two hours lecture. Two hours laboratory. Application of geologic principles to location and construction of engineering structures; engineering properties of geologic materials; engineering application of equipment used by geologists

GG 6201 Practicum in Paleontology: 1 hour.

(Prerequisites: GG 1123 and GG 1121). One hour lecture. Two hours laboratory. Laboratory for GG 4203 but may instead be taken with GG 4113 or GG 4133. A practicum in morphology of fossils, biostratigraphy, and paleoecology

GG 6203 Principles of Paleobiology: 3 hours.

(Prerequisites: GG 1123). Three hours lecture. Three hours laboratory. An introductory study of topics in paleobiology. May be taken with GG 4201

GG 6233 Applied Geophysics: 3 hours.

(Prerequisite: PH 1113 or PH 2213). Three hours lecture. A survey of the basic principles and applications of geophysics with major emphasis on petroleum exploration

GG 6304 Principles of Sedimentary Deposits I: 4 hours.

(Prerequisite: GG 1113). Three hours lecture. Three hours laboratory. Treatment of sediment and sedimentary rock. Emphasis on texture, fluid processes, deposition, structure, and diagenesis; stratigraphic analysis; and application to subsurface flow systems

GG 6323 Krast Processes and Landforms: 3 hours.

(Prerequisite: GG 1113). Three hours lecture. Processes of dissolution and the formation of Karst, pseudokarst features and landscapes. Major impact of diagenesis on rocks, landscape evolution and related subsurface hydrology

GG 6333 Geowriting: 3 hours.

Three hours lecture. Prepares students to present geosciences information through research papers and other forms of professional communication. Emphasizes writing for careers or advanced study in the geosciences

GG 6403 Gulf Coast Stratigraphy: 3 hours.

(Prerequisite: GG 4304). Three hours lecture or field trips. Systematic study of the stratigraphy of the Gulf Coast; actual field experience substituted for class work when conditions permit

GG 6414 Structural Geology: 4 hours.

(Prerequisites: GG 4114). Three hours lecture. Two hours laboratory. Application of the principles of mechanics to the forces deforming the rocks of the Earth's crust; emphasis on structures in sedimentary rocks

GG 6433 Subsurface Methods: 3 hours.

One hour lecture. Four hours laboratory. The study of subsurface geologic methods including contouring, sampling study, various types of logging, and the interpretation of subsurface data

GG 6443 Principles of Sedimentary Deposits II: 3 hours.

(Prerequisite: GG 4304). Three hours lecture. Application of principles from GG 4304. Introduces facies associations produced in depositional environments, systems, and systems tracts, tectonics and sedimentation, basin classification, and sequence analysis

GG 6446 Summer Geology Field Camp: 6 hours.

(Prerequisites: GG 4413, GG 4443, and GG 4124). Three hours lecture and three hours lab. Geologic maps, stratigraphic columns, structural cross-sections and reports will be prepared based on field data collected by the student

GG 6503 Geomorphology: 3 hours.

Three hours lecture. The origin and characteristics of land forms based on a consideration of geologic processes, stages of development, and geological structure

GG 6523 Coastal Environments: 3 hours.

Three hours lecture. An introduction to world coastal environments, with emphasis upon major shoreline-shaping processes, geographical variation in coastal landforms, human impacts, and environmental concerns

GG 6533 Geosciences Study Abroad: 3 hours.

Three hours study abroad. Identification of landforms and geomorphic processes and the field data collection techniques. Emphasis on human-environmental interactions

GG 6543 Community Engagement in Environmental Geosciences: 3 hours.

Three hours lecture. Research topics, field practices, and community engagement opportunities related to Environmental Geosciences. Activities include citizen science contributions and design; local field experiences to identify and evaluate various environmental concerns impacting communities; conduct community environmental sustainability evaluations; and develop environmental geosciences-focused community engagement events

GG 6613 Physical Hydrogeology: 3 hours.

Three hours lecture. Advanced study of the interrelationship of ground water and its geologic environment with emphasis on occurrence, distribution, and movement

GG 6623 Chemical Hydrogeology: 3 hours.

(Prerequisite: GG 4613). Three hours lecture. Advanced study of groundwater and its environment with emphasis on the chemical interaction of water with porous solids and the transport of chemical constituents

GG 6633 Introduction to Geochemistry: 3 hours.

(Prerequisite: CH 1223 and GG 1113). Three hours lecture. Survey of fundamental geochemical principles and methods. Learning in this course will be achieved by participation in analysis of published or unpublished datasets with further interpretation and application to the natural systems

GG 6643 Structural Geology for Industry Applications: 3 hours.

Two hours lecture, two hours lab. Investigation into geomechanical models of the subsurface as they pertain to the development and failure of geological structures, with emphasis on the effect of structures and stresses in industrial drilling

GG 6990 Special Topics in Geosciences: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GG 7000 Directed Individual Study in Geosciences: 1-6 hours.

Hours and credits to be arranged. (Prerequisite: Consent of student's advisor and instructor). Same as G.C.R.L. MS-700

GG 8123 Geology II: Earth, Time and Life: 3 hours.

(Prerequisite: GG 6103). Three hours lecture, video and online. Principles of historical geology with emphasis on geological time, earth history, fossils, evolution, and extinction. Primarily for K-12 science teachers

GG 8133 Rocks and Minerals: 3 hours.

Three hours video and online. Prinicples of mineralogy with an emphasis on rock formation and classification

GG 8203 Ocean Science: 3 hours.

Three hours video and online. Comprehensive examination of the ocean world, focusing on the topography, physics, chemistry, and circulation of the oceans. Primarily for K-12 science teachers

GG 8233 Environmental Geoscience: 3 hours.

Three hours video and online. Study of current environmental problems associated with the earth science realms; atmosphere, biosphere, hydrosphere, and lithosphere. Primarily for K-12 science teachers

GG 8313 History of Life: 3 hours.

Three hours video and online. Paleontological principles with an emphasis on history of life through geological time

GG 8333 Planetary Science: 3 hours.

(Prerequisite: GG 6103 or consent of instructor). Three hours lecture, video and online. Examination of mineral matter and geological processes of the moon, the planets, asteroids, comets and meteorites. Primarily for K-12 teachers

GG 8343 Paleontology of Dinosaurs: 3 hours.

Three hours lecture video and online. Application of evolutionary and taxonomic principles to the study of dinosaurs and their paleoenvironments. This course is designed as a distance learning course for in-service teachers who are required to teach earth science topics with little or no background knowledge in this subject

GG 8423 Earthquakes and Volcanoes: 3 hours.

Three hours video and online. A study of plate tectonic boundary interactions with an emphasis on earthquakes and volcanoes

GG 8503 Landforms: 3 hours.

Three hours video and online. Geomorphological principles with an emphasis on landforms of North America and their formation

GG 8561 Geoscience Seminar: 1 hour.

(Prerequisite: Graduate standing). Review of current geoscience literature; preparation and presentation of formal papers

GG 8572 Geologic Literature: 2 hours.

(Prerequisite: Major in geology). A reading course with emphasis on library research

GG 8613 Hydrology: 3 hours.

Three hours lecture, video and online. Investigation of the occurrence, distribution, movement, and chemistry of earth's waters. Emphasis on geological controls of surface and groundwater. Primarily for K-12 science teachers

GG 8633 Water Biogeochemistry: 3 hours.

(Prerequisite: GG 4633/6633). Two hours lecture. Two hours laboratory. Inter-disciplinary study of the factors that characterizes oceans, wetlands and inland aquatic systems; global water and nutrient cycling; human effects on biogeochemical cycles

GG 8643 Carbonate Petrography: 3 hours.

(Prerequisite: GG 4304 Principles of Sedimentology I or equivalent with permission of instructor). Three hours lecture. Description and analysis of carbonate rocks using visual observation and microscopy

GG 8713 Regional Geology of Eastern North America: 3 hours.

(Prerequisite: Major in geology). Three hours lecture. A study of physiography, structure, and stratigraphy of eastern North America

GG 8733 Geology of North America: 3 hours.

Three hours video and online. Plate tectonic evolution of the North American continent with emphasis on both process and stratigraphic development

GG 8743 Basin Analysis: 3 hours.

Three hours lecture. Advanced geologic basin analysis taught through the application of stratigraphic, structural, geophysical, and sedimentologic techniques and professional tools

GG 8913 Research, Readings, and Techniques in Geosciences: 3 hours.

(Prerequisite: consent of instructor). Three hours seminar. Writing and discussion of topics related to the conduct of research in the Geosciences with a focus on faculty research areas

GG 8990 Special Topics in Geosciences: 1-9 hours.

Credit and title to be arranged. This course is to be used on a limited basis to offer developing subject matter areas not covered in existing courses. (Courses limited to two offerings under one title within two academic years)

GG 9000 Research in Geology: 1-13 hours.

Hours and credit to be arranged